Essaire, sans oublier les unités. Faire les exercices sur une copie séparée





télécharger 136.38 Kb.
titreEssaire, sans oublier les unités. Faire les exercices sur une copie séparée
date de publication19.09.2017
taille136.38 Kb.
typeEssai
m.20-bal.com > comptabilité > Essai

Saint Thomas de Villeneuve Chaville Classe de terminale



DST TS2 - PHYSIQUE - AVEC CALCULATRICE

9 novembre 2015 - 2h30


Rédiger correctement chaque réponse en la justifiant. N'oublier pas d'écrire les expressions littérales avant les applications numériques. Donner les résultats dans la notation scientifique quand c’est nécessaire, sans oublier les unités. Faire les exercices sur une copie séparée. Calculatrice autorisée, mais non échangeable. Ne rendre que l’annexe avec la copie.
EXERCICE n°1 : Diffraction de la lumière à travers un tamis

La production de certains catalyseurs nécessite de déposer un métal noble (Pd, Pt, Au) sur un support inerte comme de la silice (SiO2). La silice commerciale se présente sous forme de petits grains blancs de tailles différentes : il est nécessaire de trier ces grains à l’aide de tamis pour fabriquer des catalyseurs tous identiques.

Le but de cet exercice est de vérifier la taille des mailles d’un tamis en effectuant une expérience de diffraction par un faisceau LASER.

Données : Constante de Planck : h = 6,63.10–34 J.s ;

Célérité de la lumière dans le vide : c = 3,0.108 m.s-1

  1. Première partie : La lumière, une onde

Le caractère ondulatoire de la lumière fut établi au XIXe siècle par des expériences d’interférences et de diffraction montrant, par analogie avec les ondes mécaniques, que la lumière peut être décrite comme une onde.


    1. Définir la notion d’onde progressive.

Une onde progressive est une perturbation qui se propage sans transport de matière mais avec transport d’énergie.

    1. Fresnel a utilisé les rayons solaires pour réaliser son expérience. Une telle lumière est-elle monochromatique ou polychromatique ?

La lumière solaire est une onde polychromatique, superposition de toutes les radiations colorées du spectre.

  1. Deuxième partie : Lumière LASER

Un faisceau LASER de longueur d’onde dans le vide λ0 = 532 nm et se propageant dans l’air, est dirigé vers un tamis de laboratoire (sorte de grille) à maille carrée de côté a. On observe sur un écran une figure de diffraction identique à celle représentée dans le document 1b.

Document 1a:

Mailles carrées

Remarque : Un tamis à maille carrée possède des propriétés diffractantes identiques à celles observées lors de la superposition de deux fentes allongées de même largeur et disposées perpendiculairement l’une par rapport à l’autre.
Document 1b:

Figure de diffraction

    1. Dans quelle condition le phénomène de diffraction est-il observable ?

Le phénomène de diffraction est d’autant mieux observable que la taille de l’ouverture est petite face à la longueur d’onde de la lumière jusqu’à a = 100λ.

    1. Une onde lumineuse est caractérisée par une périodicité spatiale et une périodicité temporelle. Nommer ces périodicités et préciser leur unité.

La périodicité temporelle correspond à la période T, qui s’exprime en secondes.

La périodicité spatiale correspond à la longueur d’onde , qui s’exprime en mètres.

    1. Rappeler la relation qui lie la longueur d’onde dans le vide λ0, la célérité de la lumière c dans le vide et la période T0.

c = or 0 = c = 0.0

    1. Exprimer puis calculer la valeur de la fréquence correspondant au faisceau LASER utilisé.

0 = 0 = = 6×1014 Hz

    1. Calculer l’énergie E0 associée à un photon LASER de fréquence.

E0 = h.0 E = 6×1014×6,63.10-34 = 4×10 –19 J

  1. Troisième partie : Dimension des mailles du tamis



Le LASER est placé à une distance d = 40 cm du tamis ; la distance entre le tamis et l’écran vaut D = 2,0 m. La tache centrale est un carré de côté L = 2,66 cm. (Document 2)

Document 2 :


Tache centrale
O

Ecran
T

E


    1. A l’aide du document 2, établir la relation qui lie θ, L et D. On se placera dans l’approximation des petits angles : tan = (rad).

Dans le triangle rectangle TOE ci-dessus : tan  = or tan = 

On obtient alors  = L/2D

    1. Rappeler la relation qui lie l’écart angulaire à la longueur d’onde λ et au côté a de la maille.

 =

    1. Exprimer puis calculer la dimension a d’une maille du tamis en utilisant les données expérimentales données ci-dessus. Exprimer a en μm.

D’après la relation précédente : a = et  = L/2D a =

a = = 8,0×10-5 m = 80 µm

  1. Quatrième partie : Pour aller plus loin


On désire mesurer la longueur d’onde du laser utilisé par interférences.

Dans le montage précédent le tamis à maille carrée est remplacé par une double fente F1F2. Les deux fentes sont distantes de a1-2 = 0,400 mm. Des franges d’interférences sont observées sur un écran situé à une distance D’ = 3,0 m. (Voir document 3)
Document 3a :

Schéma du montage
Document 3b :

Figure d’interférence


    1. Deux phénomènes caractéristiques des ondes se produisent ici : lesquels ?

Il s’agit de la diffraction des ondes à travers les fentes, puis de leurs interférences lorsqu’elles se croisent.

    1. Légender la figure d’interférences donnée en annexe 1 à rendre avec la copie et préciser la contribution de chaque phénomène.

On fait apparaître la tache centrale et les zones de 1ère extinction conséquences de la diffraction puis les franges sombres et claires et l’interfrange i conséquences des interférences.

    1. Expliquer en quelques mots le phénomène d’interférences.

Lorsque 2 ondes se croisent elles peuvent interférer si elles sont synchrones et cohérentes, c'est-à-dire si elles ont même fréquence et si le décalage entre les 2 est constant.

    1. Que se passe-t-il au niveau d’une frange brillante et au niveau d’une frange sombre. Qu’observe-t-on au centre de l'écran pour une ordonnée y = 0 ?

Quand les 2 ondes sont en phases, les interférences sont constructives, on observera à l’écran des franges brillantes.

Quand les 2 ondes sont en opposition de phases, les interférences sont destructives, on observera à l’écran des franges sombres.

    1. On mesure une distance d = 25,0 mm entre le centre d'une première frange lumineuse et le centre de la septième frange lumineuse consécutive. Sachant que la distance entre les centres de deux franges consécutives de même nature (interfrange) est constante telle que i , calculer la longueur d’onde exp du laser utilisé.

On a λ = i . a12 / D’ or il y a 7 franges donc 6 interfranges donc i = d/6

λ = 25,0.10-3x 0,400x10-3 / 6 x 3,00 = 556.10-9 m = 556 nm

    1. Comparer la valeur de la longueur d’onde exp avec la longueur d’onde λ0 = 532 nm donnée par le fabricant.

On calcule l’erreur relative ε = │λexp – λ0 / λ0│x 100 = 4,5% ce qui est acceptable car <10%

    1. Quelle est la couleur de la lumière LASER utilisée ?

La radiation sera rouge.

    1. Pourquoi mesurer plusieurs interfranges au lieu d'un seul ?

En mesurant 10 interfranges, on obtient une mesure plus précise car on diminue l’incertitude relative.

    1. Pour un point M situé à une ordonnée yM sur l’écran, on trouve une valeur de la différence de marche telle que δ = 2,13 μm. Le point M est-il situé sur une frange brillante ou une frange sombre ?

Par définition, on a δ = kλ quand les interférences sont constructives.

Calculons δ/λ = 2,13.10-6/532.10-9 = 4,00, k est un entier relatif donc le pont M est situé sur une frange brillante.

    1. On s’éloigne encore du centre O de l’écran jusqu’au point N pour lequel δ = 3,19 μm.

Combien de franges brillantes a-t-on rencontré entre M et N ? On pourra s’aider d’un schéma.

De même, calculons δ/λ = 2,19.10-6/532.10-9 = 6,00, k est un entier relatif donc le pont N est situé sur une frange brillante. Il y a donc 1 frange brillante entre les 2, celles correspondant à k = 5.

EXERCICE n°2 : Les ondes au service de la voiture du futur

« Sans les mains ! C'est de cette manière que vous pourrez, peut-être très bientôt, conduire votre prochaine voiture... ». Cette phrase évoque ici la voiture autonome dont la commercialisation sera lancée aux alentours de 2020.
Cette voiture « se conduira seule », car elle aura une perception globale de son environnement grâce à la contribution de plusieurs capteurs : télémètre laser à balayage (LIDAR*), caméra, capteurs à infrarouge, radars, capteurs laser, capteurs à ultrasons, antenne GPS.
*LlDAR = Light Detection And Ranging
Un odomètre mesure la distance parcourue par la voiture.

L'objectif de cet exercice est d'étudier quelques capteurs présents dans une voiture autonome.
Document 2 : Extrait d'une notice de « radar de recul » (aide au stationnement)


  • En marche arrière le « radar de recul » se met en fonction automatiquement.

  • L'afficheur indique la distance de l'obstacle détecté pour des valeurs comprises entre 0,30 m et 2,0 m.

  • L’afficheur dispose d’un buzzer intégré qui émet un signal sonore dont la fréquence évolue en fonction de la distance à l'obstacle.



Document 1 : Principe de fonctionnement des capteurs
Les radars, capteurs ultrasonores et lasers sont tous constitués d'un émetteur qui génère une onde pouvant se réfléchir sur un obstacle et d'un capteur qui détecte l'onde réfléchie. Le capteur permet de mesurer la durée entre l'émission et la réception de l'onde après réflexion sur l'obstacle. Le radar utilise des ondes radio. Le sonar utilise des ultrasons tandis que le laser d'un LIDAR émet des impulsions allant de l'ultra-violet à l'infrarouge.

Document 3 : Extrait d'un document d'un constructeur automobile : système autonome de régulation de vitesse ACC.


Le système ACC traite les informations d'un capteur radar afin d'adapter la vitesse de la voiture en fonction des véhicules qui la précèdent. Les caractéristiques du capteur radar d'un système ACC sont données ci-dessous.


Fonctionnalité

Détermine la distance, la vitesse et la direction d'objets mobiles roulant devant le véhicule

Fréquence d'émission

76 – 77 GHz

Portée minimale - portée maximale

1 m – 120 m

Activation du capteur

vitesse > 20 km.h–1



Données :

- célérité du son dans l'air à 20 °C : v = 343 m.s–1 ;

- célérité de la lumière dans le vide ou dans l'air : c = 3,0  108 m.s–1.


  1. Première partie : Propriétés de quelques capteurs présents dans la voiture autonome




    1. Compléter le tableau de l'annexe 2 à rendre avec la copie en précisant pour chaque capteur le type d'ondes utilisées.




Capteur

Type d'onde utilisée par le capteur : mécanique / électromagnétique

Points forts

Points faibles

Radar

Électromagnétique

Longue portée, robustesse face aux conditions

météorologiques, bonne performance de détection.

Pollution électromagnétique, coût relativement élevé,

encombrement, interférences électromagnétiques.

Capteurs à

ultrasons

Mécanique

Réalisation simple, coût abordable traitement simple des données.

Précision de détection sujette à la température, sensibilité aux conditions météorologiques.

Capteur laser

(LIDAR)

Électromagnétique

Longue portée, grande précision, bonne résolution, coût accessible.

Dérèglements fréquents, grande sensibilité aux conditions météorologiques, interférences.




    1. À l'aide du tableau ci-dessous et du document 3, déterminer le nom de la bande d'ondes radio utilisées par le capteur radar de l'ACC. Justifier votre réponse à l'aide d'un calcul.



Nom de bande d'ondes radio

Longueurs d'onde dans le vide

HF

10 m – 100 m

L

15 cm – 30 cm

W

2,7 mm - 4,0 mm

Le capteur radar de l’ACC émet des ondes électromagnétiques de fréquence f comprise entre 76 GHz et 77 GHz.

λ =

λ = = 3,9×10–3 m = 3,9 mm

donc les ondes radio utilisées appartiennent à la bande W.



  1. Deuxième partie : Plage de détection d'un obstacle pour le « radar de recul »



Document 4 :
Ce « radar de recul » est composé de quatre capteurs ultrasonores identiques. Chacun de ces capteurs a une portée minimale d min = 0,30 m d'après la notice. Cela signifie qu'un obstacle situé à une distance du capteur inférieure à d min ne sera pas détecté.

Le capteur est constitué d'un matériau piézo-électrique utilisé à la fois pour fonctionner en mode émetteur ou en mode récepteur. Il ne peut fonctionner correctement en récepteur que lorsqu'il a fini de fonctionner en émetteur. Pour cette raison, le capteur génère des salves ultrasonores de durée t1 = 1,7 ms avec une périodicité t2 = 12 ms.

La figure ci-dessous illustre ce fonctionnement.


    1. Légender la figure de l'annexe 3 à rendre avec la copie en indiquant les durées t1 et t2.


t1

t2


    1. Faire un schéma représentant un capteur détectant un obstacle et y faire apparaître sa portée minimale dmin et sa portée maximale dmax en précisant leurs valeurs.


Capteur

Obstacle

dmin = 0,30 m

dmax = 2,0 m


    1. Vérifier que pour la distance dmin entre le capteur et l'obstacle, la durée entre l'émission et la réception est égale à t1.

Entre son émission et sa réception, l’onde ultrasonore parcourt la distance d = 2dmin en une durée Δt.

v = donc Δt =

Δt = = 1,7×10–3 s = 1,7 ms = Δt1

    1. Si la durée que met l'onde émise pour revenir au capteur est inférieure à t1, pourquoi le capteur ne peut-il pas détecter l'obstacle de manière satisfaisante ? Justifier la réponse.

Si la durée que met l'onde émise pour revenir au capteur est inférieure à t1, alors le capteur ne peut pas fonctionner correctement en récepteur car il n’a pas fini de fonctionner en émetteur.

    1. Quelle caractéristique du signal de l'émission doit-on alors modifier pour que le capteur puisse détecter un obstacle situé à une distance inférieure à dmin ? Justifier votre réponse.

Pour que le capteur puisse détecter un obstacle situé à une distance inférieure à dmin, il faut réduire la durée d’émission Δt1, ainsi lorsque l’onde réfléchie revient vers le capteur celui-ci aura fini d’émettre.

    1. De même, montrer que la valeur de la portée maximale dmax de ce capteur est liée essentiellement à une des caractéristiques du signal émis.

v = ainsi Δt =

Δt = = 1,2×10–2 s = 12 ms = Δt2

La portée maximale du capteur est liée à la durée entre deux émissions de salves ultrasonores successives.


  1. Troisième partie 


Les radars, les capteurs ultrasonores et les capteurs lasers permettent avec des similitudes dans leur principe de fonctionnement de détecter un obstacle. A l’aide des différents documents et du tableau donné en annexe expliquer pourquoi ne pas utiliser alors un seul de ces trois types de capteurs dans un projet de voiture autonome ?

Les obstacles que doit détecter la voiture autonome sont situés à des distances différentes. Chaque dispositif est adapté à un intervalle de distances. Ainsi le radar et le lidar sont adaptés à des longues portées tandis que le capteur à ultrasons convient pour de plus faibles distances.
De plus les obstacles peuvent avoir des vitesses par rapport au véhicule très différentes. Le radar fonctionnant sur le principe de l’effet Doppler, il est adapté pour des différences de vitesse assez grandes entre le véhicule et l’obstacle. Alors que pour le capteur à ultrasons les différences de vitesse doivent être faibles.
Enfin, ils sont plus ou moins sensibles aux éléments exterieurs. (météo, interférences).

EXERCICE n°3 : Des cinémomètres

La mesure de vitesse intervient dans un très grand nombre de procédés technologiques dans des domaines très variés : industrie, médecine, sport, transport, aérospatiale.

Les dispositifs de mesure de vitesse sont généralement appelés cinémomètres. Les cinémomètres les plus courants peuvent être classés en deux catégories : les « cinémomètres Doppler » et les « cinémomètres laser ».

Cet exercice s’intéresse à certains aspects du fonctionnement et de l’utilisation de ces deux types d’appareils pour mesurer la valeur de la vitesse d’une « cible » dont la nature dépend du domaine d’application.
1. Première partie : Cinémomètre Doppler
Ce type d’appareil utilise une onde électromagnétique monochromatique. Il comprend essentiellement : un émetteur qui génère une onde de fréquence f0 = 24,125 GHz, un récepteur qui reçoit cette onde après réflexion sur la " cible " et une chaine de traitement électronique qui compare le signal émis et le signal reçu.

Si la " cible " visée a une vitesse non nulle par rapport au cinémomètre, l’appareil produit un signal périodique dont la fréquence, appelée « fréquence Doppler », est proportionnelle à la vitesse de la " cible ".
Données :

  • Relation, en première approximation, entre la « fréquence Doppler » et la vitesse de la " cible " :




  • Célérité des ondes électromagnétiques dans le vide ou dans l’air : c = 3,00 × 108 m.s-1




    1. Les cinémomètres Doppler utilisent l’effet Doppler. Expliquer en quelques lignes en quoi consiste ce phénomène.

Une source d’onde de fréquence fsource est perçue par un récepteur en mouvement à une fréquence différente frécepteur. La fréquence perçue dépend de la vitesse relative du récepteur par rapport à la source émettrice.

Si la source et le récepteur sont en approche relative alors frécepteur > fsource. Si la source émet des ondes sonores, elles seront perçues plus aigües par le récepteur en mouvement relatif.

Si la source et le récepteur s’éloignent relativement alors frécepteur < fsource. Si la source émet des ondes sonores, elles seront perçues plus graves par le récepteur en mouvement relatif.

Ce phénomène est appelé effet Doppler. Il s’applique également aux ondes électromagnétiques dont la lumière.



    1. Un cinémomètre Doppler immobile est utilisé pour mesurer la vitesse d’une " cible " qui s’approche de lui. Les ondes électromagnétiques émises sont réfléchies par la " cible " avant de revenir au cinémomètre. La cible joue donc le rôle du réflecteur.


La figure ci-contre modélise de manière très simplifiée l’allure des ondes réfléchies par cette " cible ", notée C.
Déterminer, en explicitant le raisonnement suivi, si le cinémomètre Doppler est situé au point A ou au point B.

Sur la figure présentée la cible réfléchit les ondes du cinémomètre. La cible joue alors le rôle de l’émetteur (ou source). Tandis que le cinémomètre (en A ou B) est le récepteur.

Comme la cible s’approche de l’émetteur alors
frécepteur > fsource soit dans le contexte fAouB > fsource.

L’observation du schéma montre que A perçoit une onde de longueur d’onde λA inférieure à celle λB perçue par B.

λA < λB

Comme λ = et que l’onde possède partout la même célérité v alors < . On en déduit que fA > fB.

Ainsi pour A, il perçoit fA > fsource, c’est que la cible s’approche de lui.

Pour B, fB < fsource , la cible s’éloigne de B.

Le cinémomètre est situé en A puisque la cible s’approche de lui.


    1. Un cinémomètre Doppler est utilisé pour mesurer la vitesse des balles de tennis lors des principaux tournois internationaux comme celui de Roland Garros. Au cours de ce tournoi, lors d’un service, l’appareil mesure une fréquence Doppler de valeur fD = 7416 Hz.

      1. Calculer la valeur de la vitesse de cette balle.

donc vr =

vr = = 46,1 m.s-1

      1. Ce résultat est-il cohérent avec celui affiché sur la photographie ci-dessous prise lors de ce service ?

On convertit en km/h en multipliant le résultat précédent par 3,6.

vR = 166 km.h-1 valeur conforme à celle affichée par le cinémomètre photographié.

2. Deuxième partie : Cinémomètre laser

Le principe de la mesure de vitesse grâce à cet instrument est basé sur une mesure de la distance séparant la "cible" du cinémomètre laser. On mesure le temps mis par une impulsion laser pour atteindre la "cible" visée et revenir au cinémomètre après réflexion.

Un compteur électronique de temps est déclenché lorsque l’impulsion est émise par le laser et arrêté lorsque l’impulsion « retour » est détectée.

Connaissant la durée d’un aller-retour ainsi que la vitesse de la lumière, on en déduit la distance laser-cible. Pour connaître la vitesse de la "cible", il suffit de répéter le processus de mesure de distance à des intervalles de temps fixes.

Données :

  • Valeur de la longueur d’onde de l’onde électromagnétique utilisée par un cinémomètre laser λ = 904 nm

  • Durée entre l’émission de deux impulsions laser consécutives : T = 100 µs

    1. A quel domaine spectral appartient l’onde électromagnétique utilisée dans le radar laser étudié ?

Le radar laser possède une longueur d’onde de 940 nm > 800 nm, ce qui correspond au domaine de l’infrarouge.


    1. Afin de déterminer la vitesse d’une "cible", le cinémomètre radar réalise plusieurs mesures de durée de parcours d’impulsions lumineuses.

Pour deux impulsions successives émises par le cinémomètre laser, montrer que la vitesse de la "cible" s’écrit :



À la date t = 0 s, la première impulsion est émise.

À la date t = , la première impulsion a effectué un aller-retour.

On considère que la voiture est si lente par rapport à la lumière du laser qu’elle n’a pas bougé pendant cette durée .

La lumière laser a parcouru la distance 2d à la célérité c. On a c = .

À la date t = T, la deuxième impulsion est émise.

À la date t = T + ’, elle a parcouru la distance 2d’ à la célérité c ainsi c =

d

d'

dd’

La distance d’ est plus petite que la distance d car la cible s’est rapprochée d’une distance égale à dd’ à la vitesse v en une durée égale à T.
v =

L’expression de la vitesse de la cible proposée ne contient pas d et d’.

Exprimons ces distances en fonction de  et ’ : d = et d’ = .

v =

On retrouve l’expression proposée : .


similaire:

Essaire, sans oublier les unités. Faire les exercices sur une copie séparée iconSynthèse par sélection dynamique des unités
«Automatic Language Independent Speech Processing» [12]. Une correspondance entre les unités phonétiques et les unités alisp est...

Essaire, sans oublier les unités. Faire les exercices sur une copie séparée iconOù va-t-ton ? Que faire ? Et comment repenser l’école et l’université...
«passés d’un Pouvoir sur les choses, avec le désir de bien faire, objectivement, à un Pouvoir subjectif sur les esprits et les représentations,...

Essaire, sans oublier les unités. Faire les exercices sur une copie séparée iconSynthèse Les unités de soins de longue durée : gros plan sur une réforme

Essaire, sans oublier les unités. Faire les exercices sur une copie séparée iconExercices sur les étoiles et les spectres

Essaire, sans oublier les unités. Faire les exercices sur une copie séparée icon… L’Europe, par Mikaël Garnier-Lavalley
«faire les magasins» (38 %)6…Dès lors, leur volonté d’implication mais aussi la manière de le faire changent sans pour autant trouver...

Essaire, sans oublier les unités. Faire les exercices sur une copie séparée iconL'impossible voiture propre
«Qu’est-ce qu’une voiture propre ?» «C’est pas plus de 50 millions d’unités sur la planète». Autant dire pour nous les ambulances...

Essaire, sans oublier les unités. Faire les exercices sur une copie séparée iconToiture compacte (sans couche d’utilisation et de protection) sur tôle trapézoïdale acoustique
«La toiture plate: composition – matériaux – réalisation – entretien», complétée par nit 229 «les toitures vertes» et IL s’assurera...

Essaire, sans oublier les unités. Faire les exercices sur une copie séparée iconLettre aux députés (avec ses premiers signataires)
«de l’apaisement et du rassemblement. Parce que nous devons avoir toutes les réponses et les réponses les plus adaptées, sans préjugés...

Essaire, sans oublier les unités. Faire les exercices sur une copie séparée iconFiche descriptive
«Tout sauf les armes», et vers le marché américain, grâce à la loi sur la croissance et les opportunités économiques, African Growth...

Essaire, sans oublier les unités. Faire les exercices sur une copie séparée iconLa loi sur la transition énergétique : pourquoi ne pas construire...
«The French Disconnection : Reducing the nuclear share in the France’s energy mix». Elle porte sur une analyse politique et économique...





Tous droits réservés. Copyright © 2016
contacts
m.20-bal.com